Histone deacetylases (HDACs) are important determinants of gene transcription and other biological processes. HDAC11 is one of the least characterized HDACs and is the only member of the class IV HDAC family. Our studies examined the events that control the expression of the HDAC11 transcript.
View Article and Find Full Text PDFMitotic catastrophe occurs when cells enter mitosis with damaged DNA or excess centrosomes. Cells overexpressing the centrosome protein CP110 or depleted of cyclin F, which targets CP110 for destruction, have more than two centrosomes and undergo mitotic catastrophe. Our studies show centrosome reduplication and mitotic catastrophe in osteosarcoma cells inducibly expressing a p27Kip1 mutant (termed p27K) that binds cyclins but not cyclin-dependent kinases (CDKs).
View Article and Find Full Text PDFHow mitogens reduce the abundance of the cell cycle inhibitor p27(Kip1) is an important question, and regulation of p27(Kip1) translation and turnover has been described. Here we show that platelet-derived growth factor (PDGF) reduces the activity of the p27(Kip1) promoter and the abundance of the p27(Kip1) transcript in density-arrested mouse fibroblasts. Inhibition of p27(Kip1) gene expression by PDGF required protein synthesis and histone deacetylase activity but not Akt or ERK activity.
View Article and Find Full Text PDFHistone deacetylases (HDACs) modulate the transcription of a subset of genes by various means. HDAC5 is a class II HDAC whose subcellular location is signal-dependent. At present, its known gene targets are few in number.
View Article and Find Full Text PDFBackground: The binding of cyclins to cyclin-dependent kinases regulates cell proliferation. Overexpression of cyclins is believed to deregulate the cell cycle in human tumors. Here the expression of G1 cyclins D1 and D3, and of Ki-67 in a variety of bone and soft tissue sarcomas was assessed as compared to adjacent normal tissue and to a subset of leiomyomas.
View Article and Find Full Text PDF