Publications by authors named "T Johzaki"

There is a strong demand for efficient second harmonic generation (SHG) in ultra-intense short-pulse lasers. This paper demonstrates the generation of an unconverted fundamental (1ω)+second harmonics (2ω) mixed laser on the LFEX laser system. The experimental setup utilizes 0.

View Article and Find Full Text PDF

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides.

View Article and Find Full Text PDF

High energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields.

View Article and Find Full Text PDF
Article Synopsis
  • Fast isochoric laser heating is a method that uses extremely high-intensity laser pulses to create ultrahigh-energy-density states in matter.
  • Researchers successfully heated a compressed dense plasma core using a petawatt laser and strong magnetic fields, reaching an experimental UHED state of 2.2 PPa with much less energy than traditional methods.
  • Simulations showed that efficient heating occurs through diffusion from the laser-plasma interaction zone to the dense plasma, highlighting its importance in achieving these UHED conditions.
View Article and Find Full Text PDF

To generate bright water-window (WW) soft x rays (2.3-4.4 nm), gold slab targets were irradiated with laser pulses (1064 nm, 7 ns, 1 J).

View Article and Find Full Text PDF