Publications by authors named "T Jarlborg"

While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable.

View Article and Find Full Text PDF

The electronic structures of rare-earth elements in the hexagonal close-packed structure and Europium in the body-centered cubic structure are calculated using density-functional theory (DFT). X-ray photoemission spectroscopy (XPS) and bremsstrahlung isochromatic spectroscopy (BIS) simulations are made within DFT by implying that the f-electrons are excited by a large photon energy, either by removal from the occupied states in XPS or by addition to the unoccupied f-states in BIS. The results show sizable differences in the apparent position of the f-states compared to the f-band energy of the ground states.

View Article and Find Full Text PDF

An understanding of spin excitations in cuprates is essential since the mechanism of high-T(C) superconductivity might be linked to spin fluctuations. Band calculations for 'one-dimensional' unit cells of La(2)CuO(4) show larger coupling (spin-phonon coupling, SPC) between anti-ferromagnetic spin waves and O-phonons than for Cu- or La-phonons. When this result is applied to a two-dimensional, free-electron like band, it leads to an 'hourglass' shape of the spin excitation spectrum, as in recent experiments.

View Article and Find Full Text PDF

Band calculations for supercells of La((2-x))Ba(x)CuO(4) show that the rigid band model for doping is less adequate than what is commonly assumed. In particular, weak ferromagnetism can appear locally around clusters of high Ba concentration. The clustering is important at large dilution, and averaged models for magnetism, such as the virtual crystal approximation, are unable to stabilize magnetic moments.

View Article and Find Full Text PDF

We report on results of electrical resistivity and structural investigations on the cubic modification of FeGe under high pressure. The long-wavelength helical order (T(C) = 280 K) is suppressed at a critical pressure p(c) approximately 19 GPa. An anomaly at T(X)(p) and strong deviations from a Fermi-liquid behavior in a wide pressure range above p(c) suggest that the suppression of T(C) disagrees with the standard notion of a quantum critical phase transition.

View Article and Find Full Text PDF