Publications by authors named "T J Weckman"

Article Synopsis
  • The study explores stable complexes formed between colloidal CdTe quantum dots and two different cobalt porphyrin derivatives, highlighting their potential in photocatalytic applications.
  • Researchers found that the binding of the porphyrins is stronger to the quantum dots than originally thought, with significant differences in electron transfer rates due to structural variations in the porphyrins.
  • The findings suggest that porphyrin alignment changes upon excitation enhance the charge-separated state's lifetime and propose that these complexes could be effective for CO reduction catalysis.
View Article and Find Full Text PDF

ALD/MLD hybrid thin films can be fabricated by combining atomic layer deposition (ALD) and molecular layer deposition (MLD). Even though this deposition method has been extensively used experimentally, the computational work required to acquire the reaction paths during the thin film deposition process is still in dire demand. We investigated hybrid thin films consisting of diethyl zinc and either 4-aminophenol or hydroquinone using both gas-phase and surface reactions to gain extensive knowledge of the complex phenomena occurring during the process of hybrid thin film deposition.

View Article and Find Full Text PDF

Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures using biomass-derived ionic solvents and green oxidants.

View Article and Find Full Text PDF

The "fixed diagonal matrices" (FDM) dispersion formalism [Kooi, D. P.; et al.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) of zinc oxide thin films has been under intense research in the past few years. The most common precursors used in this process are diethyl zinc (DEZ) and water. The surface chemistry related to the growth of a zinc oxide thin film via atomic layer deposition is not entirely clear, and the ideal model of the process has been contradicted by experimental data, e.

View Article and Find Full Text PDF