Publications by authors named "T J Penfold"

First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e.

View Article and Find Full Text PDF

Intramolecular charge transfer (ICT) occurs when photoexcitation causes electron transfer from an electron donor to an electron acceptor within the same molecule and is usually stabilized by decoupling of the donor and acceptor through an orthogonal twist between them. Thermally activated delayed fluorescence (TADF) exploits such twisted ICT states to harvest triplet excitons in OLEDs. However, the highly twisted conformation of TADF molecules results in limited device lifetimes.

View Article and Find Full Text PDF

We report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states.

View Article and Find Full Text PDF

Controlling the architecture of organic molecules is an important aspect in tuning the functional properties of components in organic electronics. For purely organic thermally activated delayed fluorescence (TADF) molecules, design is focused upon orthogonality orientated donor and acceptor units. In these systems, the rotational dynamics around the donor and acceptor bond has been shown to be critical for activating TADF; however, too much conformational freedom can increase the non-radiative rate, leading to a large energy dispersion of the emitting states and conformers, which do not exhibit TADF.

View Article and Find Full Text PDF

The performance of a machine learning (ML) algorithm for chemistry is highly contingent upon the architect's choice of input representation. This work introduces the partial density of states (p-DOS) descriptor: a novel, quantum-inspired structural representation which encodes relevant electronic information for machine learning models seeking to simulate X-ray spectroscopy. p-DOS uses a minimal basis set in conjunction with a guess (non-optimised) electronic configuration to extract and then discretise the density of states (DOS) of the absorbing atom to form the input vector.

View Article and Find Full Text PDF