To develop the structural chemistry of radium, the halide compounds RaX·HO and RaX·2HO (X = Cl and Br) have been synthesized and characterized and serve as benchmarks for comparisons with more complex compounds in the future. In contrast with historic reports on the structural chemistry of radium, the Ra chlorides differ from their Ba analogues. For MCl·HO (M = Ba, Ra), the variance between the metal coordination environments manifests as a small, local distortion that becomes more apparent in the extended structure.
View Article and Find Full Text PDFNearshore coral reefs face an increasing abundance of fleshy macroalgae, an indicator of degradation and threat to ecosystem functioning. Removal of macroalgae is proposed to assist coral recovery, though the ecological and physical impacts have not been studied. Nearshore reefs are also confronted with sedimentation stress, influencing reef dynamics including algal turfs, with flow-on impacts to coral recruitment, fish diets, and trophic cascades.
View Article and Find Full Text PDFSpinal Muscular Atrophy with Respiratory Distress (SMARD1) is a lethal infantile disease, characterized by the loss of motor neurons leading to muscular atrophy, diaphragmatic paralysis, and weakness in the trunk and limbs. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause a wide spectrum of motor neuron disease. Though mutations in IGHMBP2 are mostly associated with SMARD1, milder alleles cause the axonal neuropathy, Charcot-Marie-Tooth disease type 2S (CMT2S), and some null alleles are potentially a risk factor for sudden infant death syndrome (SIDS).
View Article and Find Full Text PDFCharcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A.
View Article and Find Full Text PDF