Entropies for alkane isomers longer than C are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott's tables which are obtained from a statistical mechanics-based correlation. Entropy production and heat input are calculated for the hydroisomerization of C isomers in various zeolites (FAU-, ITQ-29-, BEA-, MEL-, MFI-, MTW-, and MRE-types) at 500 K at chemical equilibrium.
View Article and Find Full Text PDFBoth CH4 hydrate accumulation and hydrate-based CO2 sequestration involve hydrate formation in mixed clay sediments. The development of realistic clay models and a nanoscale understanding of hydrate formation in mixed clay sediments are crucial for energy recovery and carbon sequestration. Here, we propose a novel molecular model of pseudo-hexagonal montmorillonite nanoparticles.
View Article and Find Full Text PDFA microscopic insight into hybrid CH physisorption-hydrate formation in halloysite nanotubes (HNTs) is vital for understanding the solidification storage of natural gas in the HNTs and developing energy storage technology. Herein, large-scale microsecond classical molecular dynamics simulations are conducted to investigate CH storage in the HNTs via the adsorption-hydration hybrid (AHH) method to reveal the effect of gas-water ratio. The simulation results indicate that the HNTs are excellent nanomaterials for CH storage via the adsorption-hydration hybrid method.
View Article and Find Full Text PDFHydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K).
View Article and Find Full Text PDF