Publications by authors named "T J H Vlugt"

Entropies for alkane isomers longer than C are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott's tables which are obtained from a statistical mechanics-based correlation. Entropy production and heat input are calculated for the hydroisomerization of C isomers in various zeolites (FAU-, ITQ-29-, BEA-, MEL-, MFI-, MTW-, and MRE-types) at 500 K at chemical equilibrium.

View Article and Find Full Text PDF

Both CH4 hydrate accumulation and hydrate-based CO2 sequestration involve hydrate formation in mixed clay sediments. The development of realistic clay models and a nanoscale understanding of hydrate formation in mixed clay sediments are crucial for energy recovery and carbon sequestration. Here, we propose a novel molecular model of pseudo-hexagonal montmorillonite nanoparticles.

View Article and Find Full Text PDF

A microscopic insight into hybrid CH physisorption-hydrate formation in halloysite nanotubes (HNTs) is vital for understanding the solidification storage of natural gas in the HNTs and developing energy storage technology. Herein, large-scale microsecond classical molecular dynamics simulations are conducted to investigate CH storage in the HNTs via the adsorption-hydration hybrid (AHH) method to reveal the effect of gas-water ratio. The simulation results indicate that the HNTs are excellent nanomaterials for CH storage via the adsorption-hydration hybrid method.

View Article and Find Full Text PDF

Hydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K).

View Article and Find Full Text PDF
Article Synopsis
  • - The text reviews experimental and simulation studies on carbon monoxide (CO) diffusion in water (HO), highlighting its significance in industries like carbon capture, oil recovery, and food processing, covering both bulk and confined systems.
  • - It analyzes data regarding diffusion coefficients of CO in brines, exploring their relationships with factors like temperature, pressure, and salinity, and discusses existing engineering models and correlations found in literature.
  • - The review emphasizes measurement techniques for confined CO diffusion and the influence of various confining materials on diffusivity, while offering insights into future research directions in this area.
View Article and Find Full Text PDF