Publications by authors named "T J Gulya"

Host-microbe interactions are increasingly recognized as important drivers of organismal health, growth, longevity and community-scale ecological processes. However, less is known about how genetic variation affects hosts' associated microbiomes and downstream phenotypes. We demonstrate that sunflower (Helianthus annuus) harbours substantial, heritable variation in microbial communities under field conditions.

View Article and Find Full Text PDF

Between 2010 and 2018, sunflower plants exhibiting virus-like symptoms, including stunting, mottling, and chlorotic ringspots on leaves, were observed from commercial fields and research plots from four sites within three distinct counties of western Nebraska (Box Butte, Kimball, and Scotts Bluff). Near identical symptoms from field samples were reproduced on seedlings mechanically in the greenhouse on multiple occasions, confirming the presence of a sap-transmissible virus from each site. Symptomatic greenhouse-inoculated plants from the 2010 and 2011 Box Butte samples tested negative for sunflower mosaic virus (SuMV), sunflower chlorotic mottle virus (SuCMoV), and all potyviruses in general by ELISA and RT-PCR.

View Article and Find Full Text PDF

The necrotrophic fungal pathogen can cause disease on numerous plant species, including many important crops. Most -incited diseases of crop plants are initiated by airborne ascospores produced when fungal sclerotia germinate to form spore-bearing apothecia. However, basal stalk rot of sunflower occurs when sclerotia germinate to form mycelia within the soil, which subsequently invade sunflower roots.

View Article and Find Full Text PDF

Resistance of sunflower to basal stalk rot (BSR) caused by the fungus is quantitative, controlled by multiple genes contributing small effects. Consequently, artificial inoculation procedures allowing sufficient throughput and resolution of resistance are needed to identify highly resistant sunflower germplasm resources and to map loci contributing to resistance. The objective of this study was to develop a greenhouse-based method for evaluating sunflower quantitative resistance to BSR that would be simple, space- and time-efficient, high throughput, high resolution, and correlated with field observations.

View Article and Find Full Text PDF

We provide results rooted in quantitative genetics, which combined with knowledge of candidate gene function, helps us to better understand the resistance to two major necrotrophic pathogens of sunflower. Necrotrophic pathogens can avoid or even benefit from plant defenses used against biotrophic pathogens, and thus represent a distinct challenge to plant populations in natural and agricultural systems. Sclerotinia and Phomopsis/Diaporthe are detrimental pathogens for many dicotyledonous plants, including many economically important plants.

View Article and Find Full Text PDF