Publications by authors named "T J Grassman"

The ability to characterize recombination and carrier trapping processes in group-III nitride-based nanowires is vital to further improvements in their overall efficiencies. While advances in scanning transmission electron microscope (STEM)-based cathodoluminescence (CL) have offered some insight into nanowire behavior, inconsistencies in nanowire emission along with CL detector limitations have resulted in the incomplete understanding in nanowire emission processes. Here, two nanowire heterostructures were explored with STEM-CL: a polarization-graded AlGaN nanowire light-emitting diode (LED) with a GaN quantum disk and a polarization-graded AlGaN nanowire with three different InGaN quantum disks.

View Article and Find Full Text PDF

Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described.

View Article and Find Full Text PDF

Misfit dislocations in heteroepitaxial layers of GaP grown on Si(001) substrates are characterized through use of electron channeling contrast imaging (ECCI) in a scanning electron microscope (SEM). ECCI allows for imaging of defects and crystallographic features under specific diffraction conditions, similar to that possible via plan-view transmission electron microscopy (PV-TEM). A particular advantage of the ECCI technique is that it requires little to no sample preparation, and indeed can use large area, as-produced samples, making it a considerably higher throughput characterization method than TEM.

View Article and Find Full Text PDF

The growth and performance of top-illuminated metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates using a step-graded In(x)Ga(1-x)As buffer is reported.

View Article and Find Full Text PDF

The NO chemisorption dynamics on ordered multilayer iron phthalocyanine (FePc) and quasiamorphous multilayer tetra-t-butyl FePc (ttbu-FePc) films on a Au(111) substrate was investigated using the King and Wells reflection technique. The NO zero coverage or initial sticking probabilities (S(0)) were measured as a function of sample temperature (T(s)) and beam energy (E(i)). The experimental results for both films show a monotonic decrease in S(0) with increasing T(s) and E(i) consistent with NO adsorption occurring via a multiple pathway precursor-mediated mechanism in which the adsorbate initially physisorbs to the FePc organics, diffuses, and chemisorbs to the Fe metal center.

View Article and Find Full Text PDF