We report nanoscale scanned probe ferromagnetic resonance force microscopy (FMRFM) imaging of individual ferromagnetic microstructures. This reveals the mechanism for high spatial resolution in FMRFM imaging: the strongly inhomogeneous local magnetic field of the cantilever mounted micromagnetic probe magnet used in FMRFM enables selective, local excitation of ferromagnetic resonance (FMR). This approach, demonstrated here in individual permalloy disks, is straightforwardly extended to excitation of localized FMR modes, and hence imaging in extended films.
View Article and Find Full Text PDFThe response of composite fermions to large wave vector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the system is varied from a half-filled Landau level by changing density or field. These deviations, which appear to be inconsistent with the current picture of composite fermions, are absent if half filling is maintained while changing density.
View Article and Find Full Text PDFPhys Rev B Condens Matter
May 1993