Publications by authors named "T J Delcamp"

Bacterial elongation factor Tu (EF-Tu) and EF-Ts are interacting proteins involved in polypeptide chain elongation in protein biosynthesis. A novel scintillation proximity assay for the detection of inhibitors of EF-Tu and EF-Ts, as well as the interaction between them, was developed and used in a high-throughput screen of a chemical library. Several compounds from a variety of chemical series with inhibitory properties were identified, including certain indole dipeptides, benzimidazole amidines, 2-arylbenzimidazoles, N-substituted imidazoles, and N-substituted guanidines.

View Article and Find Full Text PDF

The aim of this study was to investigate the role of mitochondrial ionic homeostasis in promoting reoxygenation-induced hypercontracture in cardiac muscle. Mitochondrial membrane potential and intramitochondrial Ca2+ concentration ([Ca2+]) were measured using confocal imaging in guinea pig ventricular myocytes exposed to anoxia and reoxygenation. Anoxia produced a variable, but often profound, mitochondrial depolarization.

View Article and Find Full Text PDF

The aim of this study was to evaluate whether the magnitude and time course of the intracellular acidification observed in anoxic cardiac myocytes was sufficient to protect against reoxygenation-induced hypercontracture. Cytosolic [Ca2+], [Na+], and pH were measured using fluorescent indicators in myocytes that were first subjected to both anoxia and glucose deprivation and then oxygen and glucose restoration 15-30 min after the onset of rigor. The cytosol underwent a profound acidification early in anoxia (pH 7.

View Article and Find Full Text PDF

The development of targeted, bidentate photoaffinity reagents for mapping the interacting domains of calmodulin (CaM) with the enzymes that it regulates required the synthesis and evaluation of the binding affinity of various phenothiazines. These photoaffinity reagents would possess a photoactive 3-azidophenothiazine group for cross-linking the hydrophobic binding domain of CaM, a second photoactive benzophenone group that would be activated at a different wavelength than the 3-azidophenothiazine group, and a suitable radiolabel. Difficulties were encountered in identifying those structural features that would be compatible with the introduction of a benzophenone group, with the solubility of these benzophenone-substituted phenothiazines, and with the ability of these phenothiazines to inhibit the calmodulin-mediated activation of phosphodiesterase.

View Article and Find Full Text PDF

Various photoactive phenothiazines were synthesized that possessed a 2-azido, 3-azido, 2-benzoyl, or 1,3,4-trifluoro-2-azido functionality in combination with various modifications of the N-alkyl side chain. These phenothiazines were evaluated for their ability to inhibit the calmodulin-mediated activation of phosphodiesterase (PDE). All were active in inhibiting the action of calmodulin (CaM), but those possessing either a 3-azido and a 4-(4-methyl-1-piperazinyl)butyl side chain or a 2-benzoyl group and 3-(dimethylamino)propyl side chain proved to be most active (I50 = 14 +/- 3 microM and 7 +/- 1 microM, respectively) when compared to the known inhibitor, chlorpromazine (CPZ, I50 = 30 microM).

View Article and Find Full Text PDF