Publications by authors named "T J Coward"

In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.

View Article and Find Full Text PDF

Statement Of Problem: Manually sculpting a wax pattern of a facial prosthesis is a time-, skill-, and resource-intensive process. Computer-aided design (CAD) methods have been proposed as a substitute for manual sculpting, but these techniques can still require high technical or artistic abilities. Three-dimensional morphable models (3DMMs) could semi-automate facial prosthesis CAD.

View Article and Find Full Text PDF

Background: Facial prostheses can have a profound impact on patients' appearance, function and quality of life. There has been increasing interest in the digital manufacturing of facial prostheses which may offer many benefits to patients and healthcare services compared with conventional manufacturing processes. Most facial prosthesis research has adopted observational study designs with very few randomised controlled trials (RCTs) documented.

View Article and Find Full Text PDF

Researchers in the field of tissue engineering are always searching for new scaffolds for bone repair. Polyetheretherketone (PEEK) is a chemically inert polymer that is insoluble in conventional solvents. PEEK's great potential in tissue engineering applications arises from its ability to not induce adverse reactions when in contact with biological tissues and its mechanical properties, which are similar to those of human bone.

View Article and Find Full Text PDF

Designing nasal prostheses can be challenging because of the unpaired nature of the facial feature, especially in patients lacking preoperative information. Various nose model databases have been developed as a helpful starting point for the computer-aided design of nasal prostheses, but these do not appear to be readily accessible. Therefore, an open-access digital database of nose models has been generated based on a 3-dimensional (3D) morphable face model approach.

View Article and Find Full Text PDF