Publications by authors named "T J Buser"

AbstractInvasions of freshwater habitats by marine fishes provide exceptional cases of habitat-driven biological diversification. Freshwater habitats make up less than 1% of aquatic habitats but contain ∼50% of fish species. However, while the dominant group of freshwater fishes (Otophysi) is older than that of most marine fishes (Percomorphaceae), it is less morphologically diverse.

View Article and Find Full Text PDF

Malaria is caused by parasites of the genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. drug assays are important for identifying new antimalarial compounds and monitoring drug resistance.

View Article and Find Full Text PDF

Evolutionary transitions between marine and freshwater ecosystems have occurred repeatedly throughout the phylogenetic history of fishes. The theory of ecological opportunity predicts that lineages that colonize species-poor regions will have greater potential for phenotypic diversification than lineages invading species-rich regions. Thus, transitions between marine and freshwaters may promote phenotypic diversification in trans-marine/freshwater fish clades.

View Article and Find Full Text PDF

Patterns of integration and modularity among organismal traits are prevalent across the tree of life, and at multiple scales of biological organization. Over the past several decades, researchers have studied these patterns at the developmental, and evolutionary levels. While their work has identified the potential drivers of these patterns at different scales, there appears to be a lack of consensus on the relationship between developmental and evolutionary integration.

View Article and Find Full Text PDF

Malaria parasites rely on specialized stages, called gametocytes, to ensure human-to-human transmission. The formation of these sexual precursor cells is initiated by commitment of blood stage parasites to the sexual differentiation pathway. , the most virulent of six parasite species infecting humans, employs nutrient sensing to control the rate at which sexual commitment is initiated, and the presence of stress-inducing factors, including antimalarial drugs, has been linked to increased gametocyte production and .

View Article and Find Full Text PDF