Recent remote sensing analysis has revealed extensive loss of tidal flats, yet the mechanisms driving these large-scale changes remain unclear. Here we show the spatiotemporal variations of 2,538 tidal flat transects across China to elucidate how their morphological features vary with external factors, including suspended sediment concentration (SSC), tidal range, and wave height. We observe a correlation between flat width and SSC distribution, and between flat slope and tidal range.
View Article and Find Full Text PDFTidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.
View Article and Find Full Text PDFVet World
August 2024
Background And Aim: Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a global issue that affects Thai swine as well. In Thailand, PRRSV-2 predominates over PRRSV-1. The origin of PRRSV-1 transmission remains undiscovered.
View Article and Find Full Text PDFTidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM).
View Article and Find Full Text PDFChannel networks are key to coastal wetland functioning and resilience under climate change. Vegetation affects sediment and hydrodynamics in many different ways, which calls for a coherent framework to explain how vegetation shapes channel network geometry and functioning. Here, we introduce an idealized model that shows how coastal wetland vegetation creates more complexly branching networks by increasing the ratio of channel incision versus topographic diffusion rates, thereby amplifying the channelization feedback that recursively incises finer-scale side-channels.
View Article and Find Full Text PDF