Publications by authors named "T J Bervoets"

Red Sea elasmobranch populations are facing alarming declines. Effective conservation efforts require management strategies informed by extensive datasets and by developing an understanding of distribution patterns within the basin, which is currently lacking. This study introduces CERSE (Central and Eastern Red Sea Elasmobranchs), a comprehensive compilation of elasmobranch observations in the central and eastern Red Sea basin following the route of the Red Sea Decade Expedition.

View Article and Find Full Text PDF
Article Synopsis
  • Previous experiments observed the effects of microgravity on fetal mouse long bones, and this study aimed to confirm those findings while examining the impact of daily 1×g exposure during microgravity on bone growth and mineralization.
  • Two separate experiments were carried out on American and Russian space missions, using 17-day-old fetal mouse bones cultured for four days.
  • Results revealed that microgravity reduced proteoglycan content and slowed mineralized bone growth, but daily exposure to 1×g for at least 6 hours helped mitigate these effects, suggesting artificial gravity could serve as an effective countermeasure.
View Article and Find Full Text PDF

Pleistocene environmental changes are generally assumed to have dramatically affected species' demography via changes in habitat availability, but this is challenging to investigate due to our limited knowledge of how Pleistocene ecosystems changed through time. Here, we tracked changes in shallow marine habitat availability resulting from Pleistocene sea level fluctuations throughout the last glacial cycle (120-14 thousand years ago; kya) and assessed correlations with past changes in genetic diversity inferred from genome-wide SNPs, obtained via ddRAD sequencing, in Caribbean hawksbill turtles, which feed in coral reefs commonly found in shallow tropical waters. We found sea level regression resulted in an average 75% reduction in shallow marine habitat availability during the last glacial cycle.

View Article and Find Full Text PDF

ClC-7, located in late endosomes and lysosomes, is critical for the function of osteoclasts. Secretion of Cl(-) by the ruffled border of osteoclasts enables H(+) secretion by v-H(+)-ATPases to dissolve bone mineral. Mice lacking ClC-7 show altered lysosomal function that leads to severe lysosomal storage.

View Article and Find Full Text PDF