Publications by authors named "T J Barnum"

The synthesis and spectroscopic characterization of three complexes containing a substituted 2-(2-pyridyl)benzothiazole (PyBTh) group in the ligand frame are reported along with the comparative biological activity. The ligands have been substituted at the 6-position with either a methoxy (Py(OMe)BTh) or a methyl group (Py(Me)BTh). Reaction of Py(OMe)BTh with either CuCl or Cu(NO)·2.

View Article and Find Full Text PDF

Chlorine is abundant in cells and biomolecules, yet the biology of chlorine oxidation and reduction is poorly understood. Some bacteria encode the enzyme chlorite dismutase (Cld), which detoxifies chlorite (ClO) by converting it to chloride (Cl) and molecular oxygen (O). Cld is highly specific for chlorite and aside from low hydrogen peroxide activity has no known alternative substrate.

View Article and Find Full Text PDF

Trait inference from mixed-species assemblages is a central problem in microbial ecology. Frequently, sequencing information from an environment is available, but phenotypic measurements from individual community members are not. With the increasing availability of molecular data for microbial communities, bioinformatic approaches that map metagenome to (meta)phenotype are needed.

View Article and Find Full Text PDF

Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology.

View Article and Find Full Text PDF

We have conducted an extensive search for nitrogen-, oxygen-, and sulfur-bearing heterocycles toward Taurus Molecular Cloud 1 (TMC-1) using the deep, broadband centimeter-wavelength spectral line survey of the region from the GOTHAM large project on the Green Bank Telescope. Despite their ubiquity in terrestrial chemistry, and the confirmed presence of a number of cyclic and polycyclic hydrocarbon species in the source, we find no evidence for the presence of any heterocyclic species. Here, we report the derived upper limits on the column densities of these molecules obtained by Markov Chain Monte Carlo (MCMC) analysis and compare this approach to traditional single-line upper limit measurements.

View Article and Find Full Text PDF