Publications by authors named "T J Akhurst"

Background: People with malignancy of undefined primary origin (MUO) have a poor prognosis and may undergo a protracted diagnostic workup causing patient distress and high cancer related costs. Not having a primary diagnosis limits timely site-specific treatment and access to precision medicine. There is a need to improve the diagnostic process, and healthcare delivery and support for these patients.

View Article and Find Full Text PDF

Background: Metastatic gastroenteropancreatic neuroendocrine neoplasms (GEPNEN) can cause ectopic Cushing's syndrome (ECS). ECS is highly morbid and medical therapy is complex and can be ineffective. Patients unsuitable for bilateral adrenalectomy (BA) have dismal outcomes.

View Article and Find Full Text PDF

Purpose: F-fluorothymidine (FLT) positron emission tomography (PET) enables sensitive imaging of bone marrow (BM) proliferation. Sequential FLT-PET/computed tomography scans before and during chemoradiation therapy (CRT) for non-small cell lung cancer were repurposed to investigate the dose-response effects of radiation on BM proliferation.

Methods And Materials: Twenty-six non-small cell lung cancer patients underwent platinum-based CRT to 60 Gy in 30 fractions with FLT-PET/computed tomography scans at baseline, week 2 (20 Gy), and week 4 (40 Gy).

View Article and Find Full Text PDF

Background: During a phase 0 clinical trial of an investigational programmed cell death ligand-1 (PD-L1) PET tracer in patients with non-small cell lung cancer (NSCLC), three patients received booster doses of COVID-19 vaccines before PD-L1 imaging.

Methods: Five patients underwent whole-body PET/CT imaging with a novel PD-L1 tracer, constructed by attaching Zr to the anti PD-L1 antibody durvalumab. Intramuscular (deltoid) booster doses of mRNA BNT162b2 COVID-19 mRNA vaccine were coincidentally given to three patients in the month before PD-L1 tracer injection.

View Article and Find Full Text PDF

Purpose: The O-(2-[F]-fluoroethyl)-L-tyrosine (FET) PET in Glioblastoma (FIG) trial is an Australian prospective, multi-centre study evaluating FET PET for glioblastoma patient management. FET PET imaging timepoints are pre-chemoradiotherapy (FET1), 1-month post-chemoradiotherapy (FET2), and at suspected progression (FET3). Before participant recruitment, site nuclear medicine physicians (NMPs) underwent credentialing of FET PET delineation and image interpretation.

View Article and Find Full Text PDF