Publications by authors named "T J A Snoeks"

X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features.

View Article and Find Full Text PDF

The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established.

View Article and Find Full Text PDF

Enforced activation of NF-κB signaling can be achieved by constitutive NF-κB-inducing kinases, IKK2 and NIK, or via lymphoma-associated mutants of MYD88, CARD11, and CD79B. In order to model Diffuse Large B Cell Lymphoma (DLBCL) in mice, conditional alleles for these proteins are combined with alleles targeting Cre recombinase expression in mature B cells. However, unopposed NF-κB signaling promotes plasmablast differentiation, and as a consequence the model system must be complemented with further mutations that block differentiation, such as Prdm1/BLIMP1 inactivation or overexpression of BCL6.

View Article and Find Full Text PDF

Myelodysplastic syndrome (MDS) are clonal stem cell diseases characterized mainly by ineffective hematopoiesis. Here, we present an approach that enables robust long-term engraftment of primary MDS stem cells (MDS-SCs) in mice by implantation of human mesenchymal cell-seeded scaffolds. Critically for modelling MDS, where patient sample material is limiting, mononuclear bone marrow cells containing as few as 10 CD34 cells can be engrafted and expanded by this approach with the maintenance of the genetic make-up seen in the patients.

View Article and Find Full Text PDF