Publications by authors named "T Izuhara"

Membrane lipid remodeling in plants and microalgae has a crucial role in their survival under nutrient-deficient conditions. Aquatic microalgae have low access to CO , an essential carbon source for photosynthetic assimilates; however, 70-90 mol% of their membrane lipids are sugar-derived lipids (glycolipids) such as monogalactosyldiacylglycerol (MGDG). In this study, we discovered a new system of membrane lipid remodeling responding to CO in Synechocystis sp.

View Article and Find Full Text PDF

The tolerance of photosynthesis to strong light increases in photosynthetic organisms during acclimation to strong light. We investigated the role of carotenoids in the protection of photosystem II (PSII) from photoinhibition after acclimation to strong light in the cyanobacterium sp. PCC 6803.

View Article and Find Full Text PDF

In photosynthetic organisms, the repair of photosystem II (PSII) is enhanced after acclimation to strong light, with the resultant mitigation of photoinhibition of PSII. We previously reported that oxidation of translation elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, depresses the repair of PSII in the cyanobacterium sp. PCC 6803.

View Article and Find Full Text PDF

Temperature sensitivity of Si based rings can be nullified by the use of polymer over-cladding. Integration of athermal passive rings in an electronic-photonic architecture requires the possibility of multi-layer depositions with patterned structures. This requires establishing UV, thermal and plasma stability of the polymer during multi-layer stacking.

View Article and Find Full Text PDF

We report the design criteria and performance of Si ring resonators for passive athermal applications in wavelength division multiplexing (WDM). The waveguide design rules address i) positive-negative thermo-optic (TO) composite structures, ii) resonant wavelength dependent geometry to achieve constant confinement factor (Gamma), and iii) observation of small residual second order effects. We develop exact design requirements for a temperature dependent resonant wavelength shift (TDWS) of 0 pm/K and present prototype TDWS performance of 0.

View Article and Find Full Text PDF