Rationale And Objectives: This study investigated the use of deep learning-generated virtual positron emission tomography (PET)-like gated single-photon emission tomography (SPECT) for assessing myocardial strain, overcoming limitations of conventional SPECT.
Materials And Methods: SPECT-to-PET translation models for short-axis, horizontal, and vertical long-axis planes were trained using image pairs from the same patients in stress (720 image pairs from 18 patients) and resting states (920 image pairs from 23 patients). Patients without ejection-fraction changes during SPECT and PET were selected for training.
Objective: Deep learning approaches have attracted attention for improving the scoring accuracy in computed tomography-less single photon emission computed tomography (SPECT). In this study, we proposed a novel deep learning approach referring to positron emission tomography (PET). The aims of this study were to analyze the agreement of representative voxel values and perfusion scores of SPECT-to-PET translation model-generated SPECT (SPECT) against PET in 17 segments according to the American Heart Association (AHA).
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
April 2021
The decomposition of light transport into direct and global components, diffuse and specular interreflections, and subsurface scattering allows for new visualizations of light in everyday scenes. In particular, indirect light contains a myriad of information about the complex appearance of materials useful for computer vision and inverse rendering applications. In this paper, we present a new imaging technique that captures and analyzes components of indirect light via light transport using a synchronized projector-camera system.
View Article and Find Full Text PDFA 70-year-old man was admitted to our hospital for further examination of pneumobilia and atrophy in the gallbladder. Abdominal CT scan and EUS revealed that the atrophic gallbladder was occupied by a tumor lesion. In addition, ERCP showed choledochocolonic fistula.
View Article and Find Full Text PDFEndothelial permeability is increased by vascular endothelial cell growth factor and decreased by antioxidants. Whether or not l-ascorbic acid (Asc), which decreases endothelial permeability by stimulating the endothelial barrier function, is anti-angiogenic (angiostatic) remains unknown. We examined the role of Asc on angiogenesis using two assay systems.
View Article and Find Full Text PDF