Publications by authors named "T Imhof"

Background: Infections with Herpes simplex virus (HSV)-1 or -2 usually present as mild chronic recurrent disease, however in rare cases can result in life-threatening conditions with a large spectrum of pathology. Monoclonal antibody therapy has great potential especially to treat infections with virus resistant to standard therapies. HDIT101, a humanized IgG targeting HSV-1/2 gB was previously investigated in phase 2 clinical trials.

View Article and Find Full Text PDF

The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs).

View Article and Find Full Text PDF

Objectives: Amelogenins are clinically used in periodontal regeneration as main components of root surface modifying agents, even without specifically preventing the premature colonization of the healing tissue defect by means of a physical barrier membrane. The objective of this study was to investigate the effects of human amelogenin on the proliferation, migration, and morphology of Immortalized Human Oral Keratinocytes (iHOKs).

Methods: Immortalized Human Oral Keratinocytes were expanded in Keratinocyte Growth Medium-2 (KGM-2).

View Article and Find Full Text PDF

Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the gene. Mutations in the human gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients.

View Article and Find Full Text PDF

Liquid half-cell measurements provide a convenient laboratory method for determining relevant parameters of electro-catalysts applied in polymer electrolyte membrane fuel cells. While these measurements may be effective in certain contexts, their applicability to real-world systems, such as single-cells in a membrane electrode assembly (MEA) configuration, is not always clear. This is particularly true when assessing the stability of these systems through accelerated stress tests (ASTs).

View Article and Find Full Text PDF