Publications by authors named "T Ikura"

Background: DNA damage response (DDR) and repair are vital for safeguarding genetic information and ensuring the survival and accurate transmission of genetic material. DNA damage, such as DNA double-strand breaks (DSBs), triggers a response where sensor proteins recognize DSBs. Information is transmitted to kinases, initiating a sequence resulting in the activation of the DNA damage response and recruitment of other DDR and repair proteins to the DSB site in a highly orderly sequence.

View Article and Find Full Text PDF

H2AX is a histone H2A variant that becomes phosphorylated upon genotoxic stress. The phosphorylated H2AX (γ-H2AX) plays an antioncogenic role in the DNA damage response and its foci patterns are highly variable, in terms of intensities and sizes. However, whether characteristic γ-H2AX foci patterns are associated with oncogenesis (oncogenic-specific γ-H2AX foci patterns) remains unknown.

View Article and Find Full Text PDF

NAD synthesis is a fundamental process in living cells. The effects of local metabolite production on chromatin influence the epigenetic status of chromatin in DNA metabolism. We have previously shown that K5 acetylation of H2AX by TIP60 is required for the ADP ribosylation activity of PARP-1, for histone H2AX exchange at DNA damage sites.

View Article and Find Full Text PDF

Protein crystals are generally fragile and sensitive to subtle changes such as pH, ionic strength, and/or temperature in their crystallization mother liquor. Here, using T4 phage lysozyme as a model protein, the three-dimensional rigidification of protein crystals was conducted by introducing disulfide cross-links between neighboring molecules in the crystal. The effect of cross-linking on the stability of the crystals was evaluated by microscopic observation and X-ray diffraction.

View Article and Find Full Text PDF