Publications by authors named "T Iijima"

The human 15-lipoxygenase-2 (h15-LOX-2) catalyzes mainly the regio- and stereospecific oxygenation of arachidonate to its corresponding hydroperoxide (15()-HpETE). h15-LOX-2 is implicated in the biosynthesis of inflammatory lipid mediators and plays a role in the development of atherosclerotic plaques, but it is still underexploited as a drug target. Here, to search for novel h15-LOX-2 inhibitors, we used a virtual screening (VS) approach consisting of shape-based matching, two-dimensional (2D) structural "dissimilarity", docking, and visual inspection filters, which were applied to a "curated" ZINC database (∼8 × 10 compounds).

View Article and Find Full Text PDF

Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (HSePO), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY.

View Article and Find Full Text PDF

The study objective was to validate febuxostat dosage and administration in pediatric patients with hyperuricemia including gout, using an integrated population pharmacokinetic (PopPK) analysis in the Japanese population. Integrated PopPK analysis of febuxostat used a nonlinear mixed-effects modeling (NONMEM) program on plasma febuxostat concentration data for 2611 samples from Japanese pediatric patients with hyperuricemia including gout (n = 29) and from adult subjects who are healthy or have renal dysfunction (n = 113). We described febuxostat pharmacokinetics using an integrated PopPK model applicable both to pediatric patients and to the adult population.

View Article and Find Full Text PDF

Given the aging populations in advanced countries globally, many pharmaceutical companies have focused on developing central nervous system (CNS) drugs. However, due to the blood-brain barrier, drugs do not easily reach the target area in the brain. Although conventional screening methods for drug discovery involve the measurement of (unbound fraction of drug) brain-to-plasma partition coefficients, it is difficult to consider nonequilibrium between plasma and brain compound concentration-time profiles.

View Article and Find Full Text PDF
Article Synopsis
  • - In the KEAP1-NRF2 system, KEAP1 detects oxidative and electrophilic stresses using unique bonds, raising questions about how these sensors work in living organisms and whether they sense different types of stress through similar or distinct mechanisms.
  • - Research utilizing genetically modified mice indicated that while a lack of certain selenoproteins leads to heightened NRF2 activation, removing critical KEAP1 cysteine residues prevents this activation, suggesting differentiated roles in stress sensing.
  • - The study found that a single modification in KEAP1 can substantially impact its function and identified human genetic variations that affect oxidative stress sensors, but not electrophilic sensors, emphasizing the KEAP1 system's reliability in responding to oxidative stress.
View Article and Find Full Text PDF