Publications by authors named "T I Nicas"

Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a starting compound for a new class of histidine kinase inhibitors with antibacterial activity.

View Article and Find Full Text PDF

Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs) play fundamental roles in bacterial survival and pathogenesis and have been proposed as targets for the development of novel classes of antibiotics. A new coupled assay was developed and applied to analyse the kinetic mechanisms of three new kinds of inhibitors of TCS function. The assay exploits the biochemical properties of the cognate HpkA-DrrA histidine kinase-response regulator pair from Thermotoga maritima and allows multiple turnovers of HpkA, linear formation of phosphorylated DrrA, and Michaelis-Menten analysis of inhibitors.

View Article and Find Full Text PDF

Glycopeptide antibiotics were synthesized via the PyBOP mediated condensation of aliphatic, heterocyclic and aromatic amines with the C-terminus of vancomycin, LY264826 (A82846B) and semi-synthetic derivatives of these natural products. Amides of LY264826 and vancomycin demonstrated excellent activity against staphylococci and streptococci as compared to the parent natural product. However, the amides of N-alkylated LY264826 and N-alkylated vancomycin were active against vancomycin-resistant enterococci as well as other gram-positive pathogens such as Staphylococcus aureus, S.

View Article and Find Full Text PDF

Oritavancin (LY333328) is a semisynthetic glycopeptide antibiotic having excellent bactericidal activity against glycopeptide-susceptible and -resistant Gram-positive bacteria. Oritavancin is the N-alkyl-p-chlorophenylbenzyl derivative of chloroeremomycin (LY264826) and is currently in phase III clinical trials for use in Gram-positive infections. Studies show that oritavancin and related alkyl glycopeptides inhibit bacterial cell wall formation by blocking the transglycosylation step in peptidoglycan biosynthesis in a substrate-dependent manner.

View Article and Find Full Text PDF