Publications by authors named "T I Heino"

Recent research has revealed several important pathways of epigenetic regulation leading to transcriptional changes in bone cells. Rest Corepressor 2 (Rcor2) is a coregulator of Lysine-specific histone demethylase 1 (Lsd1), a demethylase linked to osteoblast activity, hematopoietic stem cell differentiation and malignancy of different neoplasms. However, the role of Rcor2 in osteoblast differentiation has not yet been examined in detail.

View Article and Find Full Text PDF

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days).

View Article and Find Full Text PDF
Article Synopsis
  • * Sarcopenia (muscle loss) and osteoporosis (bone loss) are closely linked, with each condition serving as a predictor for the other, indicating the need for integrated research approaches.
  • * A recent workshop emphasized the importance of muscle characterization in musculoskeletal studies, advocating for more recognition and research on muscle phenotyping in both human and animal models like zebrafish and mice.
View Article and Find Full Text PDF

Different biomaterials have been clinically used as bone filling materials, although the mechanisms behind the biological effects are incompletely understood. To address this, we compared the effects of five different biomaterials: two bioactive glasses (45S5 and S53P4), hydroxyapatite (HAP), carbonated apatite (CAP), and alumina on the in vitro migration and viability of pre-osteoblastic cells. In addition, we studied the effects of biomaterials' calcium release on cell migration, viability and differentiation.

View Article and Find Full Text PDF

Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation.

View Article and Find Full Text PDF