Publications by authors named "T Hyart"

Magic-angle twisted bilayer graphene (TBG) is a tunable material with remarkably flat energy bands near the Fermi level, leading to fascinating transport properties and correlated states at low temperatures. However, grown pristine samples of this material tend to break up into landscapes of twist-angle domains, strongly influencing the physical properties of each individual sample. This poses a significant problem to the interpretation and comparison between measurements obtained from different samples.

View Article and Find Full Text PDF

Semiconducting nanowires with strong spin-orbit coupling in the presence of induced superconductivity and ferromagnetism can support Majorana zero modes. We study the pumping due to the precession of the magnetization in single-subband nanowires and show that spin pumping is robustly quantized when the hybrid nanowire is in the topologically nontrivial phase, whereas charge pumping is not quantized. Moreover, there exists one-to-one correspondence between the quantized conductance, entropy change and spin pumping in long topologically nontrivial nanowires but these observables are uncorrelated in the case of accidental zero-energy Andreev bound states in the trivial phase.

View Article and Find Full Text PDF

Parametric generation of oscillations and waves is a paradigm, which is known to be realized in various physical systems. Unique properties of quantum semiconductor superlattices allow us to investigate high-frequency phenomena induced by the Bragg reflections and negative differential velocity of the miniband electrons. Effects of parametric gain in the superlattices at different strengths of dissipation have been earlier discussed in a number of theoretical works, but their experimental demonstrations are so far absent.

View Article and Find Full Text PDF

By tuning the angle between graphene layers to specific "magic angles" the lowest energy bands of twisted bilayer graphene (TBLG) can be made flat. The flat nature of the bands favors the formation of collective ground states and, in particular, TBLG has been shown to support superconductivity. When the energy bands participating in the superconductivity are well isolated, the superfluid weight scales inversely with the effective mass of such bands.

View Article and Find Full Text PDF

Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. Interest in quantum spin Hall effect in these systems has recently put them in the spotlight. We investigate such a bilayer in an external magnetic field.

View Article and Find Full Text PDF