Publications by authors named "T Herr"

The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.

View Article and Find Full Text PDF

Self-injection locking (SIL) of laser diodes to microresonators is a powerful technique that enables compact narrow-linewidth lasers. Here, we extend this technique to chip-integrated Fabry-Perot (FP) microresonators, which offer high-quality factors and large mode volumes in a compact footprint, reducing fundamental thermorefractive noise (TRN). The resonators consist of a silicon nitride waveguide terminated by two photonic crystal reflectors fabricated via scalable ultraviolet lithography.

View Article and Find Full Text PDF

Femtosecond laser pulses enable the synthesis of light across the electromagnetic spectrum and provide access to ultrafast phenomena in physics, biology, and chemistry. Chip-integration of femtosecond technology could revolutionize applications such as point-of-care diagnostics, bio-medical imaging, portable chemical sensing, or autonomous navigation. However, current chip-integrated pulse sources lack the required peak power, and on-chip amplification of femtosecond pulses has been an unresolved challenge.

View Article and Find Full Text PDF

Astronomical precision spectroscopy underpins searches for life beyond Earth, direct observation of the expanding Universe and constraining the potential variability of physical constants on cosmological scales. Laser frequency combs can provide the required accurate and precise calibration to the astronomical spectrographs. For cosmological studies, extending the calibration with such astrocombs to the ultraviolet spectral range is desirable, however, strong material dispersion and large spectral separation from the established infrared laser oscillators have made this challenging.

View Article and Find Full Text PDF

Microresonator frequency combs (microcombs) hold great potential for precision metrology within a compact form factor, impacting a wide range of applications such as point-of-care diagnostics, environmental monitoring, time-keeping, navigation and astronomy. Through the principle of self-injection locking, electrically-driven chip-based microcombs with minimal complexity are now feasible. However, phase-stabilisation of such self-injection-locked microcombs-a prerequisite for metrological frequency combs-has not yet been attained.

View Article and Find Full Text PDF