End-stage liver diseases have an increasing impact worldwide, exacerbated by the shortage of transplantable organs. Recognized as one of the promising solutions, tissue engineering aims at recreating functional tissues and organs . The integration of bioprinting technologies with biological 3D models, such as multi-cellular spheroids, has enabled the fabrication of tissue constructs that better mimic complex structures and functionality of organs.
View Article and Find Full Text PDFAn increasing number of novel genomic therapies are expected to become available for patients with rare or ultra-rare diseases. However, the primary obstacle to equal patient access to these orphan genomic therapies are currently very high prices charged by manufacturers in the context of limited healthcare budgets. Taking into account ethical pricing theories, the paper proposes the implementation of a pricing infrastructure covering all European member states, which has the potential to promote distributive justice while maintaining the attractiveness of genomic therapy development.
View Article and Find Full Text PDFElectron beam quality is paramount for X-ray pulse production in free-electron-lasers (FELs). State-of-the-art linear accelerators (linacs) can deliver multi-GeV electron beams with sufficient quality for hard X-ray-FELs, albeit requiring km-scale setups, whereas plasma-based accelerators can produce multi-GeV electron beams on metre-scale distances, and begin to reach beam qualities sufficient for EUV FELs. Here we show, that electron beams from plasma photocathodes many orders of magnitude brighter than state-of-the-art can be generated in plasma wakefield accelerators (PWFAs), and then extracted, captured, transported and injected into undulators without significant quality loss.
View Article and Find Full Text PDF