Publications by authors named "T Heine"

ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice.

View Article and Find Full Text PDF

Layered framework materials, a rapidly advancing class of porous materials, are composed of molecular components stitched together via covalent bonds and are usually synthesized through wet-chemical methods. Computational infrared (IR) and Raman spectra are among the most important characterization tools for this material class. Besides the known spectra of the molecular building blocks and the solvent, they allow for monitoring of the framework formation during synthesis.

View Article and Find Full Text PDF

The emerging laser writing represents an efficient and promising strategy for covalent two dimensional (2D)-patterning of graphene yet remains a challenging task due to the lack of applicable reagents. Here, we report a versatile approach for covalent laser patterning of graphene using a family of trivalent organic iodine compounds as effective reagents, allowing for the engraving of a library of functionalities onto the graphene surface. The relatively weak iodine-centered bonds within these compounds can readily undergo laser-induced cleavage to in situ generate radicals localized to the irradiated regions for graphene binding, thus completing the covalent 2D-structuring of this 2D-film.

View Article and Find Full Text PDF

Little is known about the strong mediating effect of the ligand sphere and the coordination geometry on the strength and isotopologue selectivity of hydrogen adsorption on the undercoordinated copper(i) site. Here, we explore this effect using gas-phase complexes Cu(HO)(H) (with ≤ 3) as model systems. Cu(HO) attracts dihydrogen (82 kJ mol ) more strongly than bare Cu (64 kJ mol ) does.

View Article and Find Full Text PDF