The doubly charmed tetraquark T_{cc}^{+} recently discovered by the LHCb Collaboration is studied on the basis of (2+1)-flavor lattice QCD simulations of the D^{*}D system with nearly physical pion mass m_{π}=146 MeV. The interaction of D^{*}D in the isoscalar and S-wave channel, derived from the hadronic spacetime correlation by the HAL QCD method, is attractive for all distances and leads to a near-threshold virtual state with a pole position E_{pole}=-59(_{-99}^{+53})(_{-67}^{+2}) keV and a large scattering length 1/a_{0}=0.05(5)(_{-2}^{+2}) fm^{-1}.
View Article and Find Full Text PDFCryptoassets are becoming essential in the digital economy era. XRP is one of the large market cap cryptoassets. Here, we develop a novel method of correlation tensor spectra for the dynamical XRP networks, which can provide an early indication for XRP price.
View Article and Find Full Text PDFA pair of triply charmed baryons, Ω_{ccc}Ω_{ccc}, is studied as an ideal dibaryon system by (2+1)-flavor lattice QCD with nearly physical light-quark masses and the relativistic heavy-quark action with the physical charm quark mass. The spatial baryon-baryon correlation is related to their scattering parameters on the basis of the HAL QCD method. The Ω_{ccc}Ω_{ccc} in the ^{1}S_{0} channel, taking into account the Coulomb repulsion with the charge form factor of Ω_{ccc}, leads to the scattering length a_{0}^{C}≃-19 fm and the effective range r_{eff}^{C}≃0.
View Article and Find Full Text PDFA novel quantum-classical hybrid scheme is proposed to efficiently solve large-scale combinatorial optimization problems. The key concept is to introduce a Hamiltonian dynamics of the classical flux variables associated with the quantum spins of the transverse-field Ising model. Molecular dynamics of the classical fluxes can be used as a powerful preconditioner to sort out the frozen and ambivalent spins for quantum annealers.
View Article and Find Full Text PDF