Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics.
View Article and Find Full Text PDFBackground: Burnout among healthcare providers is a significant crisis in our healthcare system, especially in the context of the COVID-19 pandemic. The aim of this study was to understand what motivates healthcare workers and students to volunteer in their community as well as examine how volunteering relates to burnout. These findings can help health organizations better meet the needs of healthcare workers, as well as provide insights for non-profits that rely on volunteer professionals.
View Article and Find Full Text PDFIn the framework of the Laser Lightning Rod project, whose aim is to show that laser-induced filaments can guide lightning discharges over considerable distances, we study over a distance of 140 m the filaments created by a laser system with J-range pulses of 1 ps duration at 1 kHz repetition rate. We investigate the spatial evolution of the multiple filamentation regime using the fundamental beam at 1030 nm or using combination with the second and third harmonics. The measurements were made using both a collimated beam and a loosely focused beam.
View Article and Find Full Text PDFWe present a high-energy laser source consisting of an ultrafast thin-disk amplifier followed by a nonlinear compression stage. At a repetition rate of 5 kHz, the drive laser provides a pulse energy of up to 200 mJ with a pulse duration below 500 fs. Nonlinear broadening is implemented inside a Herriott-type multipass cell purged with noble gas, allowing us to operate under different seeding conditions.
View Article and Find Full Text PDFLightning discharges between charged clouds and the Earth's surface are responsible for considerable damages and casualties. It is therefore important to develop better protection methods in addition to the traditional Franklin rod. Here we present the first demonstration that laser-induced filaments-formed in the sky by short and intense laser pulses-can guide lightning discharges over considerable distances.
View Article and Find Full Text PDF