Poly(proline) II helical motifs located at the protein-water interface stabilize the three-dimensional structures of natural proteins. Reported here is the first example of synthetic biomimetic poly(proline)-stabilized polypeptide nanostructures obtained by a straightforward ring-opening polymerization-induced self-assembly (ROPISA) process through consecutive -carboxyanhydride (NCA) polymerization. It was found that the use of multifunctional 8-arm initiators is critical for the formation of nanoparticles.
View Article and Find Full Text PDFWith an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA).
View Article and Find Full Text PDFVascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown.
View Article and Find Full Text PDFDyslipidemia, vascular inflammation, obesity, and insulin resistance often overlap and exacerbate each other. Mutations in low density lipoprotein receptor adaptor protein-1 (LDLRAP1) lead to LDLR malfunction and are associated with the autosomal recessive hypercholesterolemia disorder in humans. However, direct causality on atherogenesis in a defined preclinical model has not been reported.
View Article and Find Full Text PDFOcular chemical injuries (OCIs) commonly cause ocular damage and visual loss and treatment uses topical therapies to facilitate healing and limit complications. However, the impact of chemical injury on corneal barrier function and treatment penetration is unknown. Therefore, the aim of this study was to determine the effect of OCI on drug penetration and absorption.
View Article and Find Full Text PDF