Total Knee Replacements (TKRs) are a commonly used treatment to help patients suffering from severely damaged knee joints, which is normally brought on by osteoarthritis. The aim of the surgery is to reduce pain and regain function of the joint, however, some of these implants fail prematurely with implant wear being one of the main factors of failure. Computational analysis is an efficient tool that can provide an in-depth insight on the evolution of wear, before utilising experimental techniques which are time-consuming and costly.
View Article and Find Full Text PDFBackground: MAGnetic Expansion Control (MAGEC) rods can prevent repeated lengthening operations for scoliosis patients. However, there have been several Field Safety Notices issued, including a worldwide product recall due to actuator endcap separation. We aimed to review adverse events reported to the Food and Drug Administration (FDA) regarding MAGEC rods, focusing on MAGEC X.
View Article and Find Full Text PDFPurpose: Determine the performance of MAGEC X rods through retrieval analysis and comparison with clinical data.
Methods: A multicentre explant database was searched to identify cases using MAGEC X device. Clinical and surgical data was gathered prospectively.
J Mech Behav Biomed Mater
December 2024
The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs.
View Article and Find Full Text PDF