We report on the first deployment of a ytterbium (Yb) transportable optical lattice clock (TOLC), commercially shipping the clock 3000 km from Boulder, Colorado, to Washington DC. The system, composed of a rigidly mounted optical reference cavity, an atomic physics package, and an optical frequency comb, fully realizes an independent frequency standard for comparisons in the optical and microwave domains. The shipped Yb TOLC was fully operational within 2 days of arrival, enabling frequency comparison with a rubidium (Rb) fountain at the United States Naval Observatory (USNO).
View Article and Find Full Text PDFA Wannier-Stark optical lattice clock has demonstrated unprecedented measurement precision for optical atomic clocks. We present a systematic evaluation of the lattice light shift, a necessary next step for establishing this system as an accurate atomic clock. With precise control of the atomic motional states in the lattice, we report accurate measurements of the multipolar and the hyperpolar contributions and the operational lattice light shift with a fractional frequency uncertainty of 3.
View Article and Find Full Text PDFEinstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates-an effect known as the gravitational redshift. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time.
View Article and Find Full Text PDFWe conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to standard model particles and fields in the mass range of 10^{-16}-10^{-21} eV. The key advantage of this two-part ratio comparison is the differential sensitivity to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques.
View Article and Find Full Text PDF