Publications by authors named "T H Akay"

While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviors, less is known about the circuits that amplify motoneuron output to adjust muscle force. Here, we demonstrate that propriospinal V3 neurons (Sim1) account for ∼20% of excitatory input to motoneurons across hindlimb muscles. V3 neurons also form extensive connections among themselves and with other excitatory premotor neurons, such as V2a neurons.

View Article and Find Full Text PDF

Powerful genetic and molecular tools available in mouse systems neuroscience research have enabled researchers to interrogate motor system function with unprecedented precision in head-fixed mice performing a variety of tasks. The small size of the mouse makes the measurement of motor output difficult, as the traditional method of electromyographic (EMG) recording of muscle activity was designed for larger animals like cats and primates. Pending commercially available EMG electrodes for mice, the current gold-standard method for recording muscle activity in mice is to make electrode sets in-house.

View Article and Find Full Text PDF

While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviours such as walking, less is known about the circuits that amplify motoneuron output to enable adaptable increases in muscle force across different locomotor intensities. Here, we demonstrate that an excitatory propriospinal neuron population (V3 neurons, Sim1 ) forms a large part of the total excitatory interneuron input to motoneurons (∼20%) across all hindlimb muscles. Additionally, V3 neurons make extensive connections among themselves and with other excitatory premotor neurons (such as V2a neurons).

View Article and Find Full Text PDF
Article Synopsis
  • Sensory feedback is crucial for motor control, but the specific neural circuits involved are not well understood; this study focuses on the medial deep dorsal horn of the mouse spinal cord as a key area for integrating proprioceptive and cutaneous signals.
  • Researchers identify glycinergic inhibitory neurons that express parvalbumin in this region and demonstrate their role in processing converging sensory inputs to shape neural activity.
  • By targeting these parvalbumin-expressing interneurons, the study shows they inhibit motor networks and affect limb movements, suggesting they play a significant role in coordinating smooth and contextually appropriate motor responses.
View Article and Find Full Text PDF

Crossed reflexes are mediated by commissural pathways transmitting sensory information to the contralateral side of the body, but the underlying network is not fully understood. Commissural pathways coordinating the activities of spinal locomotor circuits during locomotion have been characterized in mice, but their relationship to crossed reflexes is unknown. We show the involvement of two genetically distinct groups of commissural interneurons (CINs) described in mice, V0 and V3 CINs, in the crossed reflex pathways.

View Article and Find Full Text PDF