Publications by authors named "T Gubala"

Non-coding RNAs constitute a heterogeneous group of molecules that lack the ability to encode proteins but retain the potential ability to influence cellular processes through a regulatory mechanism. Of these proteins, microRNAs, long non-coding RNAs, and more recently, circular RNAs have been the most extensively described. However, it is not entirely clear how these molecules interact with each other.

View Article and Find Full Text PDF

Malignant gliomas are the most frequent primary brain tumors in adults. They are genetically heterogenous and invariably recur due to incomplete surgery and therapy resistance. Circulating tumor DNA (ctDNA) is a component of circulating cell-free DNA (ccfDNA) and represents genetic material that originates from the primary tumor or metastasis.

View Article and Find Full Text PDF

The natural environment of proteins is the polar aquatic environment and the hydrophobic (amphipathic) environment of the membrane. The fuzzy oil drop model (FOD) used to characterize water-soluble proteins, as well as its modified version FOD-M, enables a mathematical description of the presence and influence of diverse environments on protein structure. The present work characterized the structures of membrane proteins, including those that act as channels, and a water-soluble protein for contrast.

View Article and Find Full Text PDF

Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations-globular proteins and amyloids.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAA) are a complex disease with an unclear pathomechanism. A positive family history is emphasized as a significant risk factor, and a nonspecific model of inheritance suggests participation of epigenetic regulation in the pathogenesis of this disease. Past studies have implicated microRNAs in the development of AAA; therefore in this project, we measured miR-191 levels in AAA patients and compared them with a control group.

View Article and Find Full Text PDF