Solving Maxwell's equations numerically to map electromagnetic fields in the vicinity of nanostructured metal surfaces can be a daunting task when studying non-periodic, extended patterns. However, for many nanophotonic applications such as sensing or photovoltaics it is often important to have an accurate description of the actual, experimental spatial field distributions near device surfaces. In this article, we show that the complex light intensity patterns formed by closely-spaced multiple apertures in a metal film can be faithfully mapped with sub-wavelength resolution, from near-field to far-field, in the form of a 3D solid replica of isointensity surfaces.
View Article and Find Full Text PDFResistive-pulse sensing with solid-state nanopores is a sensitive, label-free technique for analyzing single molecules in solution. To add functionality to resistive-pulse measurements, direct coupling of the nanopores to other pores and nanoscale fluidic elements, ..
View Article and Find Full Text PDFA thickness variation of only one Ångström makes a significant difference in the current through a tunnel junction due to the exponential thickness dependence of the current. It is thus important to achieve a uniform thickness along the barrier to enhance, for example, the sensitivity and speed of single electron transistors based on the tunnel junctions. Here, we have observed that grooves at Al grain boundaries are associated with a local increase of tunnel barrier thickness.
View Article and Find Full Text PDFIn highly resistive superconducting tunnel junctions, excess subgap current is usually observed and is often attributed to microscopic pinholes in the tunnel barrier. We have studied the subgap current in superconductor-insulator-superconductor (SIS) and superconductor-insulator-normal-metal (SIN) junctions. In Al/AlO(x)/Al junctions, we observed a decrease of 2 orders of magnitude in the current upon the transition from the SIS to the SIN regime, where it then matched theory.
View Article and Find Full Text PDFWe present measurements of the magnetic penetration depth, lambda(-2)(T), in Pr(2-x)Ce(x)CuO(4-y) and La(2-x)Ce(x)CuO(4-y) films at three Ce doping levels, x, near optimal. Optimal and overdoped films are qualitatively and quantitatively different from underdoped films. For example, lambda(-2)(0) decreases rapidly with underdoping but is roughly constant above optimal doping.
View Article and Find Full Text PDF