Publications by authors named "T Graule"

New chemical compositions and structures for medium- and high-entropy oxides (HEOs) currently represent a promising new avenue in materials research for a wide range of applications including catalysis, energy storage, and ceramics. To speed up further development, synthesis methods for multicationic oxides are needed for controlling features like morphology, porosity, and chemical compositions. In this work, mesoporous spinel oxide spheres with five cations are synthesized using solvothermal synthesis techniques.

View Article and Find Full Text PDF

The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance.

View Article and Find Full Text PDF

Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite famil RBaCuFeO (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors.

View Article and Find Full Text PDF

High-entropy materials are compositionally complex materials which often contain five or more elements. The most commonly studied materials in this field are alloys and oxides, where their composition allows for tunable materials properties. High-entropy layered double hydroxides have been recently touted as the next focus for the field of high-entropy materials to expand into.

View Article and Find Full Text PDF

Alumina ceramics were joined by a transient liquid phase (TLP) bonding method at relatively lower temperatures, using mixed powders of BiO and ZnO with different weight ratios as interlayers between the ceramic components. Bonding was achieved at 750 °C for several of the prepared interlayer mixtures, which makes the applied approach attractive due to the relatively lower joining temperature and potentially low fabrication costs. Measurements by SEM and EDX were used to study the microstructure and chemical analysis of the obtained joints.

View Article and Find Full Text PDF