Nanocarriers have found their interests in many fields including drug delivery and labeling of cells with the aim to target and eradicate tumor cells. One of the approaches to specifically address nanocarriers, such as liposomes, to their target is to attach antibodies of interest to their surface. To date, the development of immunoliposomes has been widely explored but has mainly involved chemical and unspecific reactions that could impair antibody stability, integrity, and orientation, thus reducing optimized immunoliposomes generation.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs.
View Article and Find Full Text PDFTo ensure selective targeting based on membrane fluidity and physico-chemical compatibility between the biological membrane of the target cell and the lipid membrane of the liposomes carriers. Lipid-based carriers as liposomes with varying membrane fluidities were designed for delivering vincristine, an anti-tumor compound derived from Madagascar's periwinkle. Liposomes, loaded with vincristine, were tested on prostate, colon, and breast cancer cell lines alongside non-tumor controls.
View Article and Find Full Text PDFNanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.
View Article and Find Full Text PDFmRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems.
View Article and Find Full Text PDF