Publications by authors named "T Granda"

The ischemia and reperfusion of a jejunal graft during transplantation triggers the stress of endoplasmic reticulum thus inducing the synthesis of pro-inflammatory cytokines. Spreading of these signals stimulate immunological reactions in distal tissues, i.e.

View Article and Find Full Text PDF

Inhibitors of PI3K signaling are of great therapeutic interest in oncology. The phosphoinositide-3-kinase signaling pathway is activated in a variety of solid and non-solid tumors. We have identified an imidazopyrazine derivative, ETP-46321, as a potent inhibitor of PI3Kα [Formula: see text].

View Article and Find Full Text PDF

Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation.

View Article and Find Full Text PDF

Proapoptotic drugs such as docetaxel displayed least toxicity and highest antitumor efficacy following dosing during the circadian rest phase in mice, suggesting that cell cycle and apoptotic processes could be regulated by the circadian clock. In study 1, mouse bone marrow and/or tumor were obtained every 4 h for 24 h in C3H/HeN mice with or without MA13/C mammary adenocarcinoma in order to determine the circadian patterns in cell-cycle phase distribution and BCL-2 anti-apoptotic protein expression. In study 2, mouse bone marrow from B6D2F1 mice was sampled every 3 h for 24 h in order to confirm the BCL-2 rhythm and to study its relation with 24 h changes in the expression of proapoptotic BCL-2-associated X protein (BAX) protein and clock genes mPer2, mBmal1, mClock, and mTim mRNAs.

View Article and Find Full Text PDF

Rest-activity or cortisol rhythms can be altered in cancer patients, a condition that may impair the benefits from a timed delivery of anticancer treatments. In rodents, the circadian pattern in rest-activity is suppressed by the destruction of the suprachiasmatic nuclei (SCN) in the hypothalamus. We sought whether such ablation would result in a similar alteration of cellular rhythms known to be relevant for anticancer drug chronopharmacology.

View Article and Find Full Text PDF