The gastrointestinal tract represents one of the largest body surfaces that is exposed to the outside world. It is the only mucosal surface that is required to simultaneously recognize and defend against pathogens, while allowing nutrients containing foreign antigens to be tolerated and absorbed. It differentiates between these foreign substances through a complex system of pattern recognition receptors expressed on the surface of the intestinal epithelial cells as well as the underlying immune cells.
View Article and Find Full Text PDFThymic involution is associated with age-related changes of the immune system. Utilizing our innovative technique of transplantation of a thymus as an isolated vascularized graft in MHC-inbred miniature swine, we have previously demonstrated that aged thymi are rejuvenated after transplantation into juvenile swine. Here we have studied the role of insulin-like growth factor (IGF) and forkhead-box protein-N1 (FOXN1) as well as bone marrow (BM) in thymic rejuvenation and involution.
View Article and Find Full Text PDFAm J Transplant
January 2016
Our recent studies in an inbred swine model demonstrated that both peripheral and intra-graft regulatory cells were required for the adoptive transfer of tolerance to a second, naïve donor-matched kidney. Here, we have asked whether both peripheral and intra-graft regulatory elements are required for adoptive transfer of tolerance when only a long-term tolerant (LTT) kidney is transplanted. Nine highly-inbred swine underwent a tolerance-inducing regimen to prepare LTT kidney grafts which were then transplanted to histocompatible recipients, with or without the peripheral cell populations required for adoptive transfer of tolerance to a naïve kidney.
View Article and Find Full Text PDFPrevious attempts of α-1,3-galactocyltransferase knockout (GalTKO) pig bone marrow (BM) transplantation (Tx) into baboons have demonstrated a loss of macro-chimerism within 24 h in most cases. In order to achieve improved engraftment with persistence of peripheral chimerism, we have developed a new strategy of intra-bone BM (IBBM) Tx. Six baboons received GalTKO BM cells, with one-half of the cells transplanted into the bilateral tibiae directly and the remaining cells injected intravenously (IBBM/BM-Tx) with a conditioning immunosuppressive regimen.
View Article and Find Full Text PDF