Glycan-binding specificity was studied for Jacalin, RCA 120, SBA, PHA-L, PHA-E, WGA, UEA, AAL, LTL, LEL, SNA, DSA, LCA, MAH and Con A, lectins widely used in histochemistry. Oligosaccharide- and polysaccharide-based glycan arrays were applied. Expected specificity was confirmed for only 6 of the 15 lectins and the glycan binding profiles of some lectins were dramatically broader than generally accepted.
View Article and Find Full Text PDFFiber-like cells with thickened cell walls of specific structure and polymer composition that includes (1 → 4)-β-galactans develop in the outer stem cortex of several moss species gametophytes. The early land plants evolved several specialized cell types and tissues that did not exist in their aquatic ancestors. Of these, water-conducting elements and reproductive organs have received most of the research attention.
View Article and Find Full Text PDFThe plant cell wall represents the outer compartment of the plant cell, which provides a physical barrier and triggers signaling cascades under the influence of biotic and abiotic stressors. Drought is a factor that negatively affects both plant growth and development. Cell wall proteins (CWP) play an important role in the plant response to water deficit.
View Article and Find Full Text PDFThe cellulose-enriched tertiary cell walls present in many plant fibers have specific composition, architecture, machinery of formation, and function. To better understand the mechanisms underlying their mode of action and to reveal the peculiarities of fibers from different plant species, it is necessary to more deeply characterize the major components. Next to overwhelming cellulose, rhamnogalacturonan I (RG-I) is considered to be the key polymer of the tertiary cell wall; however, it has been isolated and biochemically characterized in very few plant species.
View Article and Find Full Text PDFThe specificity of the most plant carbohydrate-binding proteins (CBP), many of which are known only through bioinformatic analysis of the genome, has either not been studied at all or characterized to a limited extent. The task of deciphering the carbohydrate specificity of the proteins can be solved using glycoarrays composed of many tens or even hundreds of glycans immobilized on a glass surface. Plant carbohydrates are the most significant natural ligands for plant proteins; this work shows that plant polysaccharides without additional modification can be immobilized on the surface, bearing N-hydroxysuccinimide activated carboxyl groups.
View Article and Find Full Text PDF