Objective: Colorectal cancer continues to be a serious health problem in developed countries. Since the incidence of this cancer is constantly increasing, it is currently the subject of numerous studies. Researchers have begun to approach the treatment of patients in a more holistic way.
View Article and Find Full Text PDFThe protein CHI3L1 contributes to cancer development by several mechanisms, including stimulation of angiogenesis and invasion as well as immunomodulatory effects. These properties make it a potential target for the development of targeted therapies in precision medicine. In this context, the particular potential of CHI3L1 inhibition could be considered in glioblastoma multiforme (GBM), whose tumors exhibit high levels of angiogenesis and increased CHI3L1 expression.
View Article and Find Full Text PDFChitinase-like proteins have multiple biological functions that promote tumor growth, angiogenesis and metastasis. Expression of CHI3L2, which is similar in structure to CHI3L1, is detected in glioma cells and tumor-associated macrophages (TAMs) in glioma and breast cancer. However, its exact role remains unclear.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes.
View Article and Find Full Text PDFBackground: (1)The protein CHI3L1 supports cancer development in several ways, including stimulation of angiogenesis and invasion as well as immunomodulatory effects. These properties make it a potential target for the development of targeted therapies in precision medicine. In this context, the particular potential of CHI3L1 inhibition could be considered in glioblastoma multiforme (GBM), whose tumors exhibit high levels of angiogenesis and increased CHI3L1 expression.
View Article and Find Full Text PDF