The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood.
View Article and Find Full Text PDFDengue is a mosquito-borne tropical disease, caused by the Dengue virus (DENV). It has become a severe problem and is a rising threat to public health. In this study, we have evaluated commercial Merilisa i Dengue NS1 Antigen kit (Meril LifeSciences India Pvt.
View Article and Find Full Text PDFThe low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments.
View Article and Find Full Text PDFSolid-state NMR (ssNMR) spectroscopy has emerged as the method of choice to analyze the structural dynamics of fibrillar, membrane-bound, and crystalline proteins that are recalcitrant to other structural techniques. Recently, H detection under fast magic angle spinning and multiple acquisition ssNMR techniques have propelled the structural analysis of complex biomacromolecules. However, data acquisition and resonance-specific assignments remain a bottleneck for this technique.
View Article and Find Full Text PDF