While the growing realization of the importance of long-range interactions is being demonstrated in cold and ultracold bimolecular collision experiments, their influence on one of the most critical ion-neutral reactions has been overlooked. Here, we address the non-Langevin abrupt decrease observed earlier in the low-energy integral cross-sections and rate coefficients of the astrochemically important H + HeH+→ H2+ + He reaction. We attribute this to the presence of artificial barriers on existing potential energy surfaces (PESs).
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2024
In this work we present new state-to-state integral scattering cross sections and initial-state selected rate coefficients for the Ar (S) + H (XΣ, = 0,) reactive system for collision energies up to 0.1 eV (with respect to the Ar (S) + H (XΣ, = 0, = 0) channel). To the best of our knowledge, these cross sections are the first fully state resolved ones that were obtained by performing time-independent quantum mechanical and quantum statistical calculations.
View Article and Find Full Text PDFThe contributions in this special theme collection, in honor to Prof. P. Villarreal, cover a broad variety of computational methodologies and experimental techniques, containing studies on gas phase, clusters and condensed phase systems.
View Article and Find Full Text PDFMultiply charged superfluid helium nanodroplets are utilized to facilitate the growth of cationic copper clusters (Cu, where = 1-8) that are subsequently solvated with up to 50 H molecules. Production of both pristine and protonated cationic Cu clusters are detected mass spectrometrically. A joint effort between experiment and theory allows us to understand the nature of the interactions determining the bonding between pristine and protonated Cu and Cu cations and molecular hydrogen.
View Article and Find Full Text PDFWe present a new analytical potential energy surface (PES) for the interaction between the trihydrogen cation and a He atom, , in its electronic ground state. The proposed PES has been built as a sum of two contributions: a polarization energy term due to the electric field generated by the molecular cation at the position of the polarizable He atom, and an exchange-repulsion and dispersion interactions represented by a sum of "atom-bond" potentials between the three bonds of and the He atom. All parameters of this new PES have been chosen and fitted from data obtained from high-level ab-initio calculations.
View Article and Find Full Text PDF