Water pollution caused by dyes is a significant environmental issue, necessitating the development of effective, cost-efficient decolorization methods suitable for industrial use. In this study, a Chitosan-Fe polymeric gel was synthesized, characterized, and tested for removing the azo dye Direct Red 83:1 from water. The polymeric magnetic chitosan was analyzed using various techniques: Field Emission Scanning Electron Microscopy (FE-SEM) revealed a porous structure, Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) demonstrated the thermal stability, Infrared Spectrophotometry (IR) indicated the successful coordination of iron at the C3 position, and X-ray Powder Diffraction (XRD) confirmed the crystalline nature of the polymeric structure.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
The significant environmental issue of water pollution caused by emerging contaminants underscores the imperative for developing novel cleanup methods that are efficient, economically viable, and that are intended to operate at high capacity and under continuous flows at the industrial scale. This study shows the results of the operational design to build a prototype for the retention at lab scale of pollutant residues in water by using as adsorbent material, insoluble polymers prepared by β-cyclodextrin and epichlorohydrin as a cross-linking agent. Laboratory in-batch tests were run to find out the adsorbent performances against furosemide and hydrochlorothiazide as pollutant models.
View Article and Find Full Text PDFThis study is aimed to validate water-insoluble cyclodextrin-epichlorohydrin polymer (β-EPI) use to remove, by adsorption, sulfamethoxazole (SMX) from water and then release it via an environmentally friendly treatment so that the adsorbent can be recycled according to one of the objectives of the European Project Life "Clean up" (LIFE 16 ENV/ES/000169). SMX adsorption experiments on β-EPI polymer in-batch were performed, varying different experimental parameters of the process, such as contact time, pH values, and so on. The adsorption process, exothermic and driven by enthalpy, occurs both through the formation of inclusion and association complexes, involves mainly hydrophobic and hydrogen bonds, has a rate-controlling step depending on both pollutant concentration and adsorbent dose and can be described by the Freundlich and Dubinin-Radushkevich models which confirm the polymer surface heterogeneity and the physical nature of the adsorption.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
February 2021
Due to the negative effects of emerging contaminants on the environment, that can potentially induce deleterious effects in aquatic and human life, this paper focuses on the removal from the water of Furosemide, through the adsorption process. Indeed, only a few papers are available in the literature about the Furosemide adsorption and, chitosan films are thus proposed for this purpose as safe, sustainable, and recyclable adsorbent materials. In the present work, the effects on the adsorption process of several experimental parameters such as the pH values, ionic strength, amount of adsorbent/pollutant, and temperature values were investigated.
View Article and Find Full Text PDF