Publications by authors named "T Glanzman"

We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12}  GeV^{-1} for ALP masses 0.5≲m_{a}≲5  neV at 95% confidence.

View Article and Find Full Text PDF

We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface.

View Article and Find Full Text PDF

The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs.

View Article and Find Full Text PDF
Article Synopsis
  • Recent measurements from ATIC-2, CREAM, and PAMELA have revealed unexpected patterns in cosmic-ray proton and helium spectra, showing hardening above several hundred GeV and a gradual softening below this range.
  • The findings suggest a harder spectrum for helium compared to protons, which may provide insights into the origins of high-energy cosmic rays.
  • Analysis using Fermi Large Area Telescope data indicates that both single and broken power law models fit the local proton spectrum well, with indices around 2.68 and 2.61 for energies above 200 GeV.
View Article and Find Full Text PDF

Observations of occultations of bright -ray sources by the Sun may reveal predicted pair halos around blazars andor new physics, such as, e.g., hypothetical light dark matter particles-axions.

View Article and Find Full Text PDF