Pregnant people are ubiquitously exposed to endocrine-disrupting phthalates through consumer products and food. The placenta may be particularly vulnerable to the adverse effects of phthalates, with evidence from animal models suggesting impacts on placental development and vascularization. We translate this research to humans, examining gestational exposure to phthalates and phthalate replacements in relation to novel markers of chorionic plate surface vascularization.
View Article and Find Full Text PDFBackground: The impacts of prenatal maternal affective symptoms on the placental structure are not well-established. Employing Geographic Information System (GIS) spatial autocorrelation, Moran's I, can help characterize placental thickness uniformity/variability and evaluate the impacts of maternal distress on placental topography.
Methods: This study (N = 126) utilized cohort data on prenatal maternal affective symptoms and placental 2D and 3D morphology.
BMC Pregnancy Childbirth
June 2022
Background: In prior work we observed differences in morphology features in placentas from an autism-enriched cohort as compared to those from a general population sample. Here we sought to examine whether these differences associate with ASD-related outcomes in the child.
Methods: Participants (n = 101) were drawn from the Early Autism Risk Longitudinal Investigation (EARLI), a cohort following younger siblings of children with autism spectrum disorder (ASD).
Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S).
View Article and Find Full Text PDFSomatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes.
View Article and Find Full Text PDF