Publications by authors named "T Gerats"

Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17-Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders.

View Article and Find Full Text PDF

Background: Crossing over assures the correct segregation of the homologous chromosomes to both poles of the dividing meiocyte. This exchange of DNA creates new allelic combinations thus increasing the genetic variation present in offspring. Crossovers are not uniformly distributed along chromosomes; rather there are preferred locations where they may take place.

View Article and Find Full Text PDF

The large scale sequencing of insertion element flanking sequences has revolutionized reverse genetics in plant research: Insertion mutants can now simply be identified in silico by BLAST searching the resulting flanking sequence databases. The development of next-generation sequencing technologies has further facilitated the creation of flanking sequence collections derived from entire mutant populations. Here we describe a highly efficient and widely applicable method that we developed to amplify, sequence, and identify dTph1 transposon flanking sequences from a library of 1000 Petunia W138 individuals simultaneously.

View Article and Find Full Text PDF

Transposon tagging has been used successfully in a range of organisms for the cloning of mutants of interest. In species containing high copy numbers of transposable elements combined with a high transposition rate, forward cloning can be quite challenging and requires specific high-resolution methods. Here we detail an updated version of the Transposon Display technique, which allows visualization of large numbers of transposon-flanking sequences simultaneously in a highly robust and reproducible manner.

View Article and Find Full Text PDF

Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia.

View Article and Find Full Text PDF