Magic-angle spinning (MAS) solid-state NMR methods are crucial in many areas of biology and materials science. Conventional probe designs have often been specified with 0.1 part per million (ppm) or 100 part per billion (ppb) magnetic field resolution, which is a limitation for many modern scientific applications.
View Article and Find Full Text PDFSeveral synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H, temperatures where PLs lose their fluidity.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2022
Materials that are capable of adsorbing and desorbing gases near ambient conditions are highly sought after for many applications in gas storage and separations. While the physisorption of typical gases to high surface area covalent organic frameworks (COFs) occurs through relatively weak intermolecular forces, the tunability of framework materials makes them promising candidates for tailoring gas sorption enthalpies. The incorporation of open Cu(I) sites into framework materials is a proven strategy to increase gas uptake closer to ambient conditions for gases that are capable of π-back-bonding with Cu.
View Article and Find Full Text PDFWe are currently witnessing the dawn of hydrogen (H) economy, where H will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H storage densities on both a volumetric and gravimetric basis.
View Article and Find Full Text PDFCoordination complexes of Mg(BH) are of interest for energy storage, ranging from hydrogen storage in BH to electrochemical storage in Mg based batteries. Understanding the stability of these complexes is crucial since storage materials are expected to undergo multiple charging and discharging cycles. To do so, we examined the thermal stabilities of the 1 : 1 mixtures of Mg(BH) with different glymes by DSC-TGA, TPD-MS and powder XRD analysis.
View Article and Find Full Text PDF